56 resultados para Thalassia testudinum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertical growth of shoots of the seagrass Thalassia testudinum Banks ex Konig in four meadows, along a range of exposure to waves, in the Mexican Caribbean was examined to elucidate its magnitude and its relationship to sediment dynamics. Average internodal length varied between 0.17 and 12.75 mm, and was greatest in the meadow which experienced the greatest burial by sand waves moved by Hurricane Gilbert (September 1988). Internodal length showed annual cycles, confirmed by the flower scars always preceding or coinciding with the annual minimum internodal length. These annual cycles on the shoot allowed estimation of annual leaf production, which varied, on average, between 14.2 and 19.3 leaves per shoot year-1. High vertical shoot growth was associated with long internodes and high leaf production rate, which increased with increasing vertical shoot growth to a maximum of approximately 25 leaves per shoot year-1, with vertical growth of about 30 mm year-1 or more. Average internodal length showed substantial interannual differences from perturbations derived from the passage of Hurricane Gilbert. The growth response of the plants surviving moderate burial and erosion after the hurricane involved enhanced vertical growth and increased leaf production, and reduced vertical growth, respectively, after 1988. The variability in shoot vertical growth of T testudinum can be separated into seasonal changes in plant growth, and long-term variability associated with episodic perturbations involving sediment redistribution by hurricanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the relative importance of top-down and bottom-up effects by experimentally evaluating the combined and separate effects of nutrient availability and grazer species composition on epiphyte communities and seagrass condition in Florida Bay. Although we succeeded in substantially enriching our experimental cylinders, as indicated by elevated nitrogen concentrations in epiphytes and seagrass leaves, we did not observe any major increases in epiphyte biomass or major loss of Thalassia testudinum by algal overgrowth. Additionally, we did not detect any strong grazer effects and found very few significant nutrient-grazer interactions. While this might suggest that there was no important differential response to nutrients by individual grazer species or by various combinations of grazers, our results were complicated by the lack of significant differences between control and grazer treatments, and as such, these results are best explained by the presence of unwanted amphipod grazers (mean = 471 ind. m–2) in the control cylinders. Our estimates of grazing rates and epiphyte productivities indicate that amphipods in the control cylinders could have lowered epiphyte biomass to the same level that the experimental grazers did, thus effectively transforming the control treatments into grazer treatments. If so, our experiments suggest that the effects of invertebrate grazing (and those of amphipods alone) were stronger than the effects of nutrient enrichment on epiphytic algae, and that it does not require a large density

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites. 2 Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site. 3 Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site. 4 A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and belowground tissues in the dark. 5 Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia. 6 Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum . Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study documents relationships between plant nutrient content and rhizome carbohydrate content of a widely distributed seagrass species, Thalassia testudinum, in Florida. Five distinct seagrass beds were sampled for leaf nitrogen, leaf phosphorus, and rhizome carbohydrate content from 1997 to 1999. All variables displayed marked intra- and inter- regional variation. Elemental ratios (mean N:P ± S.E.) were lowest for Charlotte Harbor (9.9 ± 0.2) and highest for Florida Bay (53.5 ± 0.9), indicating regional shifts in the nutrient content of plant material. Rhizome carbohydrate content (mean ± S.E.) was lowest for Anclote Keys (21.8 ± 1.6 mg g−1 FM), and highest for Homosassa Bay (40.7 ± 1.7 mg g−1 FM). Within each region, significant negative correlations between plant nutrient and rhizome carbohydrate content were detected; thus, nutrient-replete plants displayed low carbohydrate content, while nutrient-deplete plants displayed high carbohydrate content. Spearman's rank correlations between nutrient and carbohydrate content varied from a minimum in Tampa Bay (ρ = −0.2) to a maximum in Charlotte Harbor (ρ = −0.73). Linear regressions on log-transformed data revealed similar trends. This consistent trend across five distinct regions suggests that nutrient supply may play an important role in the regulation of carbon storage within seagrasses. Here we present a new hypothesis for studies which aim to explain the carbohydrate dynamics of benthic plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 1992 and 2000, we sampled 504 randomly chosen locations in theFlorida Keys, Florida, USA, for the elemental content of green leaves of theseagrass Thalassia testudinum. Carbon content ranged from29.4–43.3% (dry weight), nitrogen content from 0.88–3.96%, andphosphorus content from 0.048–0.243%. N and P content of the samples werenot correlated, suggesting that the relative availability of N and P variedacross the sampling region. Spatial pattern in C:N indicated a decrease in Navailability from inshore waters to the reef tract 10 km offshore;in contrast, the pattern in C:P indicated an increase in P availability frominshore waters to the reef tract. The spatial pattern in N:P was used to definea P-limited region of seagrass beds in Florida Bay and near shore, and anN-limited region of seagrass beds offshore. The close juxtaposition ofN–and P-limited regions allows the possibility that N loading from thesuburban Florida Keys could influence the offshore, N-limited seagrass bedswithout impacting the more nearshore, P-limited seagrass beds. Carbonate - Nutrient lim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass, net primary productivity (NPP), foliar elemental content, and demography of Thalassia testudinum were monitored in populations from five sites across Florida Bay beginning in January 2001. Sites were selected to take advantage of the spatial variability in phosphorus (P) availability and salinity climates across the bay. Aboveground biomass and NPP of T. testudinum were determined five to six times annually. Short-shoot demography, belowground biomass, and belowground NPP were assessed from a single destructive harvest at each site and short-shoot cohorts were estimated from leaf scar counts multiplied by site-specific leaf production rates. Biomass, relative growth rate (RGR), and overall NPP were positively correlated with P availability. Additionally, a positive correlation between P availability and the ratio of photosynthetic to non-photosynthetic biomass suggests that T. testudinum increases allocation to aboveground biomass as P availability increases. Population turnover increased with P availability, evident in positive correlations of recruitment and mortality rates with P availability. Departures from seasonally modeled estimates of RGR were found to be influenced by salinity, which depressed RGR when below 20 psu or above 40 psu. Freshwater management in the headwaters of Florida Bay will alter salinity and nutrient climates. It is becoming clear that such changes will affect T. testudinum, with likely feedbacks on ecosystem structure, function, and habitat quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the effectiveness of herbivores in mitigating the effects of nutrient enrichment is well documented, few studies have examined the effects of nutrient enrichment on components of consumer fitness. Enclosures were deployed in shallow turtle grass (Thalassia testudinum) beds in Florida Bay, Florida in fall 2003, spring 2004, and fall 2004 to measure the effects of nitrogen and phosphorous enrichment on the growth, fecundity, and stoichiometry of three invertebrate epiphyte grazers commonly associated with T. testudinum. The gastropod Turbo castanea exhibited significantly greater wet weight gain and lower C:P and N:P in enriched than in ambient treatments. Although nutrient enrichment did not have any significant effects on the growth of caridean shrimp (treatment consisted of several different caridean shrimp species), their C:N was significantly lower in enriched treatments. The final size and stoichiometry of the hermit crab Paguristes tortugae was not significantly affected by nutrient enrichment, nor did nutrient enrichment significantly affect the fecundity of P. tortugae, the only grazer in which gravid individuals or egg masses were present. Our study demonstrated that nutrient enrichment of primary producers can positively affect the growth of marine invertebrate grazers and alter their stoichiometry; however, these effects were species-specific and may be dependent upon the life stage, specific diets, and/or compensatory feeding habits of the grazers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification poses a serious threat to a broad suite of calcifying organisms. Scleractinian corals and cal- careous algae that occupy shallow, tropical waters are vulnerable to global changes in ocean chemistry be- cause they already are subject to stressful and variable carbon dynamics at the local scale. For example, net heterotrophy increases carbon dioxide concentrations, and pH varies with diurnal fluctuations in photosyn- thesis and respiration. Few researchers, however, have investigated the possibility that carbon dioxide con- sumption during photosynthesis by non-calcifying photoautotrophs, such as seagrasses, can ameliorate deleterious effects of ocean acidi fi cation on sympatric calcareous algae. Naturally occurring variations in the density of seagrasses and associated calcareous algae provide an ecologically relevant test of the hypoth- esis that diel fl uctuations in water chemistry driven by cycles of photosynthesis and respiration within seagrass beds create microenvironments that enhance macroalgal calci fi cation. In Grape Tree Bay off Little Cayman Island BWI, we quanti fi ed net production and characterized calci fi cation for thalli of the calcareous green alga Halimeda incrassata growing within beds of Thalassia testudinum with varying shoot densities. Re- sults indicated that individual H . incrassata thalli were ~6% more calci fi ed in dense seagrass beds. On an areal basis, however, far more calcium carbonate was produced by H . incrassata in areas where seagrasses were less dense due to higher rates of production. In addition, diel pH regimes in vegetated and unvegetated areas within the lagoon were not signi fi cantly different, suggesting a high degree of water exchange and mixing throughout the lagoon. These results suggest that, especially in well-mixed lagoons, carbonate pro- duction by calcareous algae may be more related to biotic interactions between seagrasses and calcareous algae than to seagrass-mediated changes in local water chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperate and tropical seagrasses are susceptible to wasting disease outbreaks caused by pathogenic protists of the genus Labyrinthula. Even though there is an increasing awareness of the environmental conditions that influence the etiology of seagrass-. Labyrinthula disease dynamics, the biochemical basis of seagrass defense responses, in particular chemical defenses, is still vastly understudied. Using an in vitro bioassay, we provide evidence that previously characterized phenolic and potentially novel, undescribed non-phenolic metabolites derived from Thalassia testudinum Banks ex Konig exhibit anti-labyrinthulid activity. All phenolic compounds tested displayed dose-dependent behavior and selected combinations interacted synergistically. The flavone glycoside thalassiolin B was roughly 20-100 times more active than any phenolic acid tested. Based upon values reported in the literature, it was calculated that infected specimens of T. testudinum contain natural concentrations of phenolic acids that are consistently greater than what is required to inhibit Labyrinthula growth. This suggests that while there may be an ample supply of phenolic-based derivatives available to inhibit Labyrinthula growth, they may not be readily bio-accessible.Using a bioactivity-guided approach, a semi-purified chemical fraction from T. testudinum was found to contain anti-labyrinthulid activity. 1H NMR spectra for this fraction lacked aromatic hydrogen signals, suggesting that the bioactive compound was non-aromatic in nature. Furthermore, the LC-MS fragmentation patterns were suggestive of the presence of glycosylated natural products of an unknown structural class. This has the potential to provide a foundation for future chemical investigations.